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Abstract—A visual appearance of natural materials funda-
mentally depends on illumination conditions, which signifi-
cantly complicates a real scene analysis. We propose textu-
ral features based on fast Markovian statistics, which are
simultaneously invariant to illumination colour and robust to
illumination direction. No knowledge of illumination conditions
is required and a recognition is possible from a single training
image per material. Material recognition is tested on the
currently most realistic visual representation - Bidirectional
Texture Function (BTF), using the Amsterdam Library of Tex-
tures (ALOT), which contains 250 natural materials acquired
in different illumination conditions. Our proposed features
significantly outperform several leading alternatives including
Local Binary Patterns (LBP, LBP-HF) and Gabor features.

Keywords-texture; colour; Markov random field; illumina-
tion invariance;

I. INTRODUCTION

Natural material recognition is an important subtask of
many computer vision applications. Without description of
material appearance structure (texture) the recognition is
limited to diverse variants of colour histograms. A promis-
ing method for object/image recognition based on textural
features was recently introduced [1]. Unfortunately, the
appearance of natural materials is highly illumination and
view angle dependent. As a consequence, most texture based
classification or segmentation applications require multiple
training images [2] captured under all available illumination
and viewing conditions for each material class. Such learn-
ing is obviously clumsy and very often even impossible if the
required measurements are not available. Although, unseen
training images can be approximated to a certain extent using
the photometric stereo [3], it requires at least three mutually
registered images with different illumination direction for
each material.

The normalisation cancelling lighting variations caused by
the object geometry [4] completely wipes out rough texture
structures with all their valuable discriminative information.
It was demonstrated [5] that for a grey–scale image of an
object with Lambertian reflectance there are no discrimina-
tive functions invariant to a change of illumination direction.
Local Binary Patterns [6] (LBP) are popular illumination
invariant features, but they are noise sensitive. This vulner-
ability was addressed [7], but used patterns are specifically
selected according to the training set. Recently proposed
LBP-HF [8] studies also relations between rotated patterns.

Finally, the MR8 texton representation [2] was extended to
be colour and illumination invariant [9].

We introduce efficient illumination invariant textural fea-
tures based on Markov Random Fields (MRF). The proposed
features extend the textural representation [10] with ten
new illumination invariants. Moreover, we test the texture
recognition on a very difficult, recently created ALOT tex-
ture library [9], where our method significantly outperforms
alternative features.

II. TEXTURE REPRESENTATION

The texture is factorised into K levels of the Gaussian
down-sampled pyramid and subsequently each pyramid level
is modelled by a MRF type of model - either Causal Au-
toregressive Random (CAR) model or 2D Gaussian Markov
Random Field model (GMRF). The model parameters are
estimated and illumination invariants are computed from
them. Finally, the illumination invariants from all the pyra-
mid levels are concatenated into one feature vector.

A. Markov Random Field Models

Let us assume that each multispectral (colour) texture
is composed of C spectral planes (usually C = 3),
Yr = [Yr,1, . . . , Yr,C ]T is the multispectral pixel at location
r. The multiindex r = (r1, r2) is composed of row index
r1 and column index r2. The spectral planes are mutually
decorrelated by the Karhunen-Loeve transformation (Princi-
pal Component Analysis) and subsequently modelled using
either a 3-dimensional model or a set of C 2-dimensional
models.

The 3-dimensional representation assumes that the mul-
tispectral texture pixel Yr can be modelled as a linear
combination of its neighbours:

Yr = γZr + εr , Zr = [Y Tr−s : ∀s ∈ Ir]T (1)

where Zr is the Cη×1 data vector with multiindices r, s, t,
γ = [A1, . . . , Aη] is the C × C η unknown parameter
matrix with square submatrices As. Similarly, the set of
2-dimensional models assumes that the j-th spectral plane
of pixel at position r can be modelled as:

Yr,j = γjZr,j + εr , Zr,j = [Yr−s,j : ∀s ∈ Ir]T

where Zr,j is the η × 1 data vector, γj = [a1, . . . , aη]
is the 1 × η unknown parameter vector. Some selected
contextual neighbour index shift set is denoted Ir and η =
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Figure 1. Example materials from ALOT dataset, rows differs in camera and light conditions.

cardinality(Ir) . GMRF and CAR models mutually differ
in the correlation structure of the driving noise εr and in
the topology of the contextual neighbourhood Ir (see [11]
for details). As a consequence, all CAR model statistics can
be efficiently estimated analytically [12], while the GMRF
statistic estimates require either a numerical evaluation or
some approximation.

The texture is analysed in a chosen direction, where
multiindex t changes according to the movement on the
image lattice I . Given the known CAR process history
Y (t−1) = {Yt−1, Yt−2, . . . , Y1, Zt, Zt−1, . . . , Z1} the pa-
rameter estimation γ̂ can be accomplished using fast,
numerically robust and recursive statistics [12]:

Vt−1 =
(∑t−1

u=1 YuYu
T ∑t−1

u=1 YuZu
T∑t−1

u=1 ZuYu
T ∑t−1

u=1 ZuZu
T

)
+ V0

=
(
Vyy(t−1) V Tzy(t−1)

Vzy(t−1) Vzz(t−1)

)
,

λt−1 = Vyy(t−1) − V Tzy(t−1)V
−1
zz(t−1)Vzy(t−1) ,

where the positive definite matrix V0 represents prior
knowledge.

The parameter estimate of GMRF is approximated by
pseudo-likelihood estimator, because either Bayesian or
Maximum Likelihood estimate is computationally demand-
ing. The noise εr covariance estimate is denoted Σ̂.

B. Illumination Invariant Features

We assume that two images Ỹ , Y of the same texture
and view position differing only in illumination can be
linearly transformed to each other: Ỹr = B Yr, where
Ỹr, Yr are multispectral pixel values at position r and
B is a transformation matrix. This linear formula is valid
for changes in brightness and illumination spectrum, with
surfaces including both Lambertian and specular reflectance.

Consequently, the model data vectors are related by Z̃r =
∆Zr, where ∆ is the Cη × Cη block diagonal matrix
with blocks B on the diagonal. We derived [13] that Ãs =
BAsB

−1 , λ̃r = B λrB
T ,

˜̂Σ = B Σ̂BT , where matrices
Z̃r, Ãs, λ̃r,

˜̂Σ are related to the model of the same texture
with different illumination. Illumination invariants features
were derived as well [13].

In this paper, we propose ten new illumination invariant
features for the CAR model (the derivation will occur in
follow-up paper):

1) β1 = log
(

1
r−t |λr||λt|

−1
)
,

2) β2 = log
(

1
r−t |Vzz(r)||Vzz(t)|

−1
)
,

3) β3 = log
(
|Vzz(r)||λr|−η

)
,

4) β4 = tr
{
Vyy(r)λ

−1
r

}
.

Moreover, the prediction probability p(Yr|Y (r−1)) and the
probability p(Y (r)|M) used in optimal model selection M
(both derived in [12]) can be utilized. We define:

5) β5 = log
∑
r

1
|I|p(Yr|Y

(r−1)) ,

6) β6 = log
∣∣log p(Y (r)|M)

∣∣ ,
Instead of logarithm, we can use an alternative normalisation
of invariants 1. – 4. based on geometric means:

7) β7 =
(

1
r−t |λr||λt|

−1
)−2C

,

8) β8 =
(

1
r−t |Vzz(r)||Vzz(t)|

−1
)−2Cη

,

9) β9 =
(
|Vzz(r)||λr|−η

)−2C
,

10) β10 =
√
|Vyy(r)||λr|−1 .

For the GMRF model, the invariants 1. – 4. and 7. – 10.
can be defined using the same statistics with the following
differences: λ have to be substituted with Σ̂ , V0 = O
(zero matrix) and the absolute value of determinant |Vzz|
is used, because Vzz is not always positive definite in the
GMRF model. The invariants 6. and 7. do not have GMRF
counterparts.

In the case of 2D models, all the invariants are com-
puted for each spectral plane separately. Feature vectors
are formed from the introduced illumination invariants with
t = 0, r equal to the last pixel position. Together with
these invariants, we use the illumination invariants [13] with
redefined νs = diag(As), ∀s ∈ Ir (the original definition
as eigenvalues would cancel effect of the Karhunen-Loeve
transformation). Although the features β1 – β10 are rota-
tion invariant, the overall representation is not, due to the
included [13] features.

The dissimilarity of two feature vectors is computed
using fuzzy contrast [14] in its symmetrical form FC3 (see
details in [10]). The fuzzy contrast includes normalisation
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Table I
CORRECT CLASSIFICATION [%] ON THE ALOT TEXTURE LIBRARY. THE

LAST COLUMN IS SIZE OF FEATURE VECTOR.

experiment
method 1 2 size
2D CAR-KL, β1 – β6 52.6 68.6 415
2D CAR-KL, β5 – β10 53.9 69.0 415
2D CAR-KL, β5, β6 51.6 68.1 355
2D CAR-KL, β1 – β10 54.0 68.9 475
3D CAR-KL, β1 – β10 50.3 68.0 345
3D CAR-KL, β5 – β10 50.2 68.1 325
GMRF-KL β1 – β4,β7 – β10 46.8 57.8 430
GMRF-KL β7 – β10 44.8 56.2 370
2D CAR-KL 48.5 67.2 325
3D CAR-KL 47.5 65.1 295
GMRF-KL 36.6 52.2 310
Gabor features, RGB 44.6 34.0 144
Opponent Gabor f. 41.8 53.1 252
LBP8,1+8,3 32.8 39.8 512
LBP8,1+8,3, RGB 41.2 45.6 1536
LBPu

16,2, RGB 38.6 43.4 729
LBPriu2

8,1+24,3, RGB 34.2 42.6 108
LBP-HF8,1+24,3 32.6 50.0 340

of features, which is necessary for features with different
scales. It requires estimates of mean and standard deviation
of all features. The proposed MRF features were computed
at K = 5 levels of the Gaussian pyramid, using the 6-th
order hierarchical neighbourhood, which consists in η = 14
neighbours.

III. EXPERIMENTS

In the experiments, we tested the proposed features on
the recognition of natural materials, which is needed in
real scene analysis applications. We focused on the fea-
ture robustness under changing illumination spectrum and
direction. Viewpoint changes are limited to the slant angle
variation.

The material recognition was tested on the recently cre-
ated Amsterdam Library of Textures (ALOT) [9]. The ALOT
library is a BTF database containing an extraordinary col-
lection of 250 natural materials, each acquired with varying
viewpoint and illumination positions (Fig. 1). Most of the
materials have rough surfaces, so the movement of light
source changes the appearance of materials.

In the first experiment, we used one half of the dataset
[9] to exclude multiple texture rotations. It contains images
of the first 200 materials divided into parameter tuning,
training, and test sets (3 × 1200 images). Let c stands
for camera, l for light, i for reddish illumination, and
r for optional material rotation. The tuning set consists
in samples c{1, 4}l{1, 4, 8}r60◦; the training set is de-
fined as c{1, 4}l{1, 4, 8} and the test set contains setups
c{2, 3}l{3, 5}, c3l2, and c1i. We cropped all the images
to the same size 1536 × 660 pixels. The classification was
evaluated on the test set images, where the nearest neighbour
(1-NN) classifier was trained on 4 images per material

Figure 2. Correction classification [%] for different number of random
training images per material in experiment 1.

randomly selected from the training set. The features were
computed from whole images.

In the second experiment, we used images of all 250
materials, with all light setups, no rotations and cameras 1
and 3, which is 14 images per material. One training image
per material was randomly selected and the others were
classified with the 1-NN classifier. This test was performed
separately for images from camera 1 and 3, the results were
averaged (2× 1750 images in total). As a consequence this
experiment do not include a recognition under viewpoint
variation, which is in contrast with the experiment 1.

Our proposed features are compared with the most fre-
quented features such as Gabor features [15], Opponent
Gabor features [16], Local Binary Patterns [6] (LBP) and
also recently published extension LBP-HF [8]. The grey
level features as Gabor features and LBP were computed
for each spectral plane separately and concatenated (denoted
with “RGB” suffix in Tab. I), because the performance was
better. The mean and standard deviation of features, which
are required by the dissimilarity of our features and both
Gabor features, were estimated on the parameter tuning set
of experiment 1 and on all images in experiment 2.

A. Results

Both experiments were computed for 1000 random se-
lections of training images and average classification results
are shown in Tab. I. Standard deviations were below 0.5%
and 1.4% for experiment 1 and 2, respectively. The best
results were achieved with “2D CAR-KL, β5 – β10” model,
which are 5%, 2% improvements to our previous model
and 9%, 16% to alternative features. Tab. I also displays
performance of “2D CAR-KL” model with different groups
of the illumination invariants β`. Fig. 2 shows progression
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of correct classification in experiment 1, where the classifier
was trained with descending number of random training
images per material. Advantage of the proposed features was
maintained for all numbers of training images.

Although the experiment 2 used only a single training
image per material, the results are about 15% better than
in the experiment 1. The reason is that the experiment 1
includes a viewpoint variation, which is even grater in the
test set than in the training set. Moreover, the methodology
in the experiment 2 produces an upper bound of correct
classification, while the hold-out used in the experiment 1
yields a lower bound.

The proposed features were approximately 1.5× slower
than LBPriu2

8,1+24,3 and 4× faster than Gabor features.

IV. CONCLUSION

We have introduced new illumination invariants derived
from a MRF textural representation. The proposed textural
features are fast to compute and they are invariant to
illumination colour and brightness changes. Superiority of
our features over LBP, LBP-HF and Gabor features was
demonstrated in the recognition test with 250 natural mate-
rials acquired under varying viewpoint, illumination colour
and direction. This make the proposed features suitable for
Content Based Image Retrieval (CBIR) applications. 1

In future research we will target the rotation invariance
and integration into a CBIR system.
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